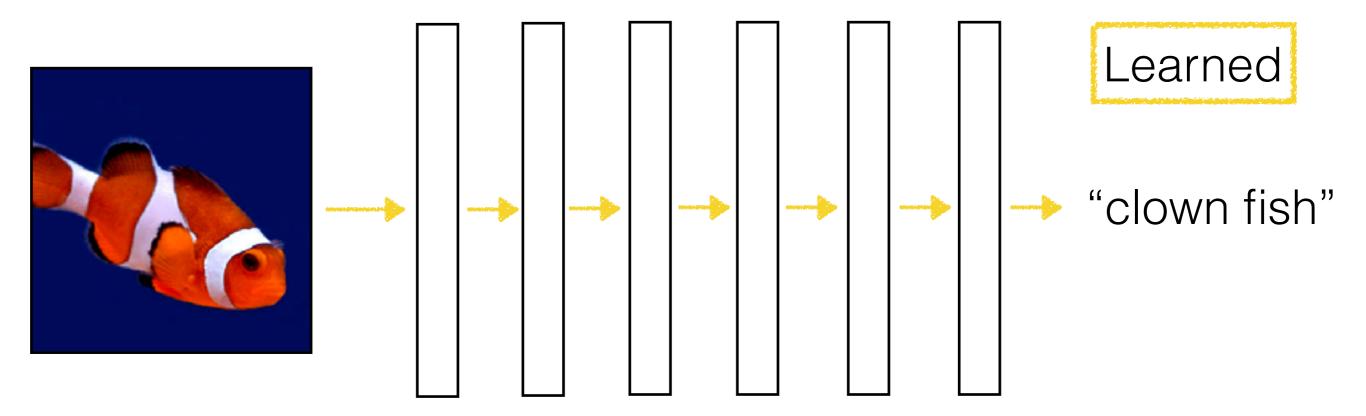


94-775/95-865 Lecture 11: Image Analysis With Convolutional Neural Nets

George Chen

Deep Learning



- Inspired by biological neural nets but otherwise not the same at all (biological neural nets do not work like deep nets)
- Learns a layered representation
 - Tries to get rid of manual feature engineering
 - Need to design constraints for what features are learned to account for structure in data (e.g., images, text, ...)

Learning a neural net amounts to curve fitting

We're just estimating a function

Neural Net as Function Approximation

Given input, learn a computer program; that computes output

this is a function

Single-layer neural net example:

We are fixing what the function f looks like in code and are only adjusting W and b!!!

Neural Net as Function Approximation

Given input, learn a computer program that computes output

Single-layer neural net example:

```
output = softmax(np.dot(input, W) + b)
```

Two-layer neural net example:

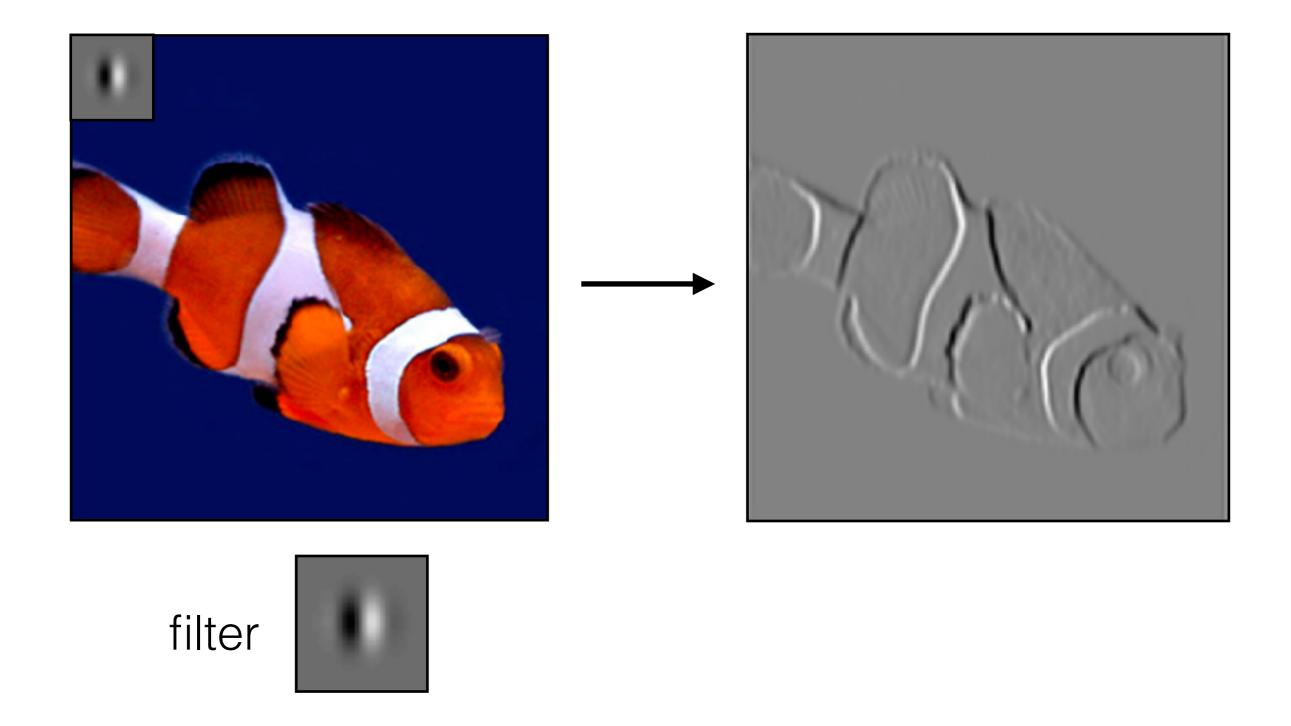
```
layer1_output = relu(np.dot(input, W1) + b1)
output = softmax(np.dot(layer1 output, W2) + b2)
```

Learning a neural net: learning a simple computer program that maps inputs (raw feature vectors) to outputs (predictions)

Architecting Neural Nets

- Increasing number of layers (depth) makes neural net more complex
 - Can approximate more functions
 - More parameters needed
 - More training data may be needed
- Designing neural net architectures is a bit of an art
 - How to select the number of neurons for intermediate layers?
 - Very common in practice: modify existing architectures that are known to work well (e.g., VGG-16 for computer vision/image processing)

Image analysis with Convolutional Neural Nets (CNNs, also called convnets)



0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	0	0
0	1	0
0	0	0

Filter (also called "kernel")

Input image

0	0	0	0	0	0	0
0	О	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	0	0
0	1	0
0	0	0

Filter (also called "kernel")

Input image

Take dot product!

0	00	00	0	0	0	0
0	01	¹ 0	1	1	0	0
0	10	10	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0		

Input image

Take dot product!

0	0	00	00	0	0	0
0	0	¹ 1	10	1	0	0
0	¹ 0	10	10	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
О	0	0	0	0	0	0

0	1		

Input image

Take dot product!

0	0	0	00	00	0	0
О	0	¹ 0	¹ 1	10	0	0
0	1	¹ 0	10	10	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
О	0	1	1	1	0	0
0	0	0	0	0	0	0

0	1	1	

Input image

Take dot product!

0	0	0	0	00	00	0
О	0	1	¹ 0	¹ 1	00	0
0	1	1	¹ 0	10	10	0
0	1	1	1	0	0	0
О	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	1	1	1	

Input image

Take dot product!

0	0	0	0	0	00	00
0	0	1	1	¹ 0	01	00
0	1	1	1	10	¹ 0	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
О	0	1	1	1	0	0
0	0	0	0	0	0	0

0	1	1	1	0

Input image

Take dot product!

0	0	0	0	0	0	0
00	00	1 0	1	1	0	0
0	¹ 1	¹ C	1	1	1	0
0	1 0	1 C	1	0	0	0
0	1	1	1	1	1	0
О	0	1	1	1	0	0
0	0	0	0	0	0	0

0	1	1	1	0
1				

Input image

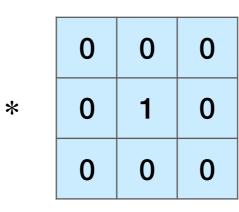
Take dot product!

0	0	0	0	0	0	0
О	00	10	1 0	1	0	0
0	¹ 0	¹ 1	1 0	1	1	0
0	¹ 0	10	1 0	0	0	0
0	1	1	1	1	1	0
О	0	1	1	1	0	0
0	0	0	0	0	0	0

0	1	1	1	0
1	1			

Input image

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
О	1	1	1	1	1	0
О	0	1	1	1	0	0
0	0	0	0	0	0	0



1					
	0	1	1	1	0
	1	1	1	1	1
	1	1	1	0	0
	1	1	1	1	1
	0	1	1	1	0

Input image

Output image

Note: output image is smaller than input image

If you want output size to be same as input, pad 0's to input

0	0	0	0	0	0	0	0	0
0	О	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0
0	0	1	1	1	1	1	0	0
0	0	1	1	1	0	0	0	0
0	0	1	1	1	1	1	0	0
0	0	0	1	1	1	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

0	0	0
0	1	0
0	0	0

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input image

Output image

Note: output image is smaller than input image

If you want output size to be same as input, pad 0's to input

0	0	0	0	0	0	0
0	0	1	1	1	0	0
О	1	1	1	1	1	0
0	1	1	1	0	0	0
О	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

0	0	0
0	1	0
0	0	0

0	1	1	1	0
1	1	1	1	1
1	1	1	0	0
1	1	1	1	1
0	1	1	1	0

Input image

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

$$=\frac{1}{9}\begin{bmatrix} 3 & 5 & 6 & 5 & 3 \\ 5 & 8 & 8 & 6 & 3 \\ 6 & 9 & 8 & 7 & 4 \\ 5 & 8 & 8 & 6 & 3 \\ 3 & 5 & 6 & 5 & 3 \end{bmatrix}$$

Input image

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

-1	-1	-1
2	2	2
-1	-1	-1

O	1	3	1	0
1	1	1	3	3
0	0	-2	-4	-4
1	1	1	3	3
0	1	3	1	0

Input image

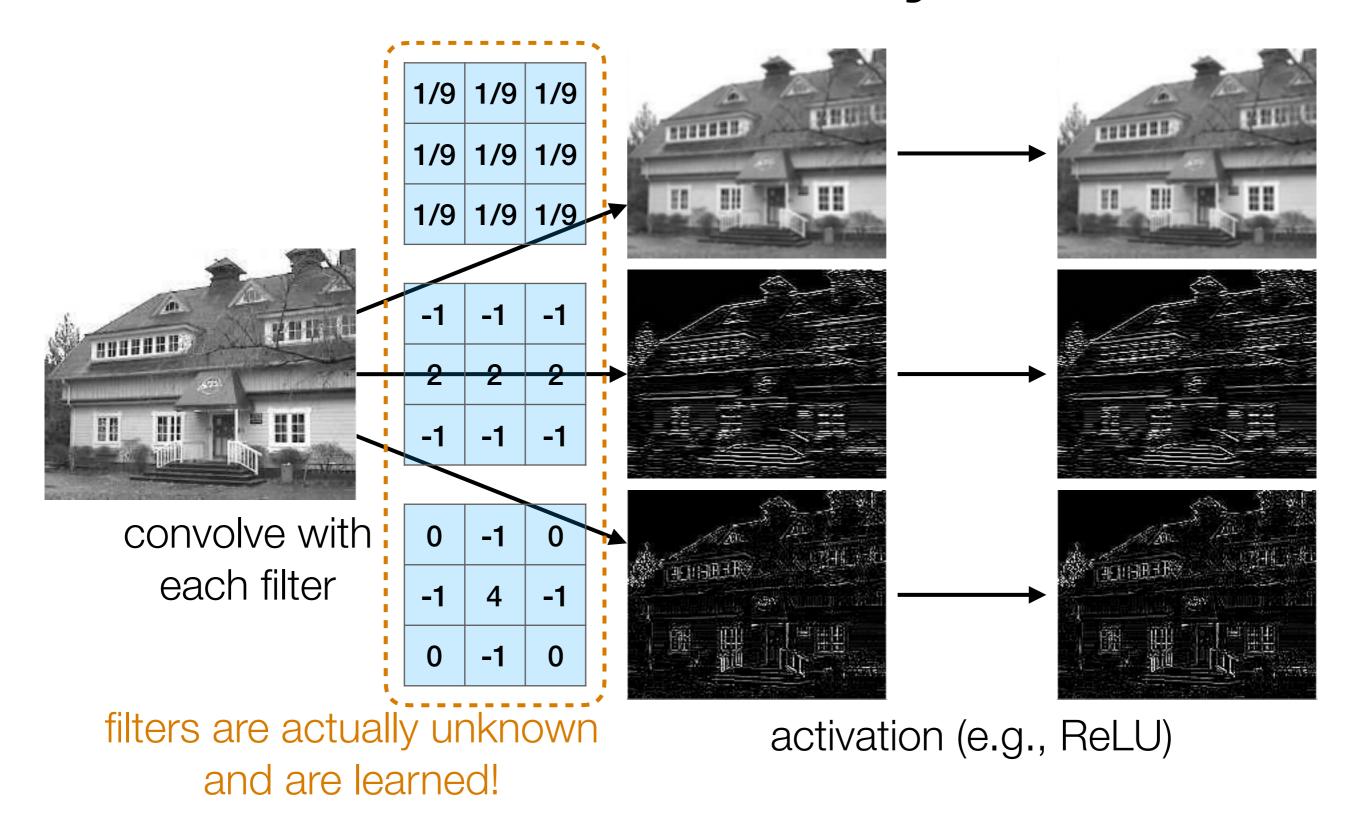
Very commonly used for:

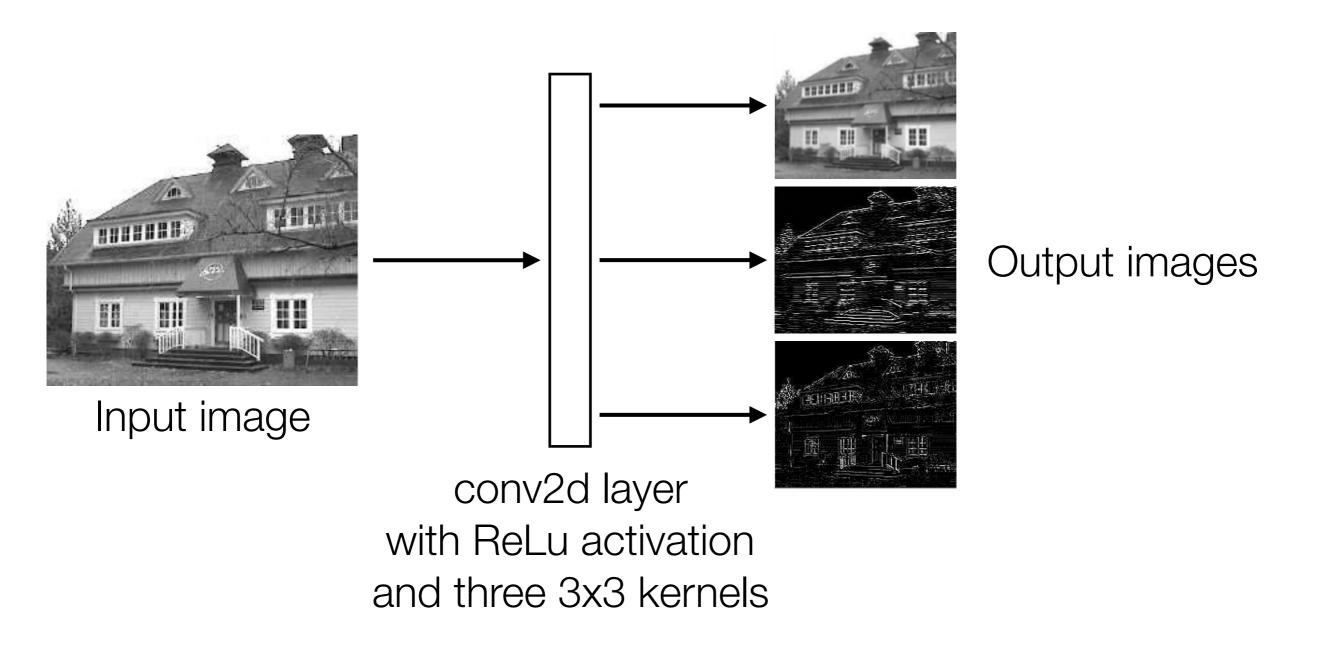
Blurring an image

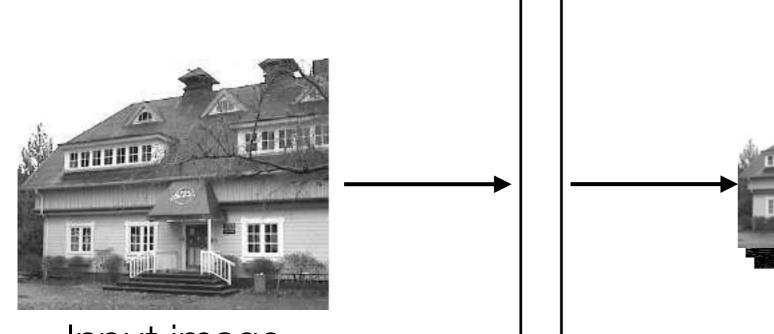
	1/9	1/9	1/9
*	1/9	1/9	1/9
	1/9	1/9	1/9

Finding edges

(this example finds horizontal edges)





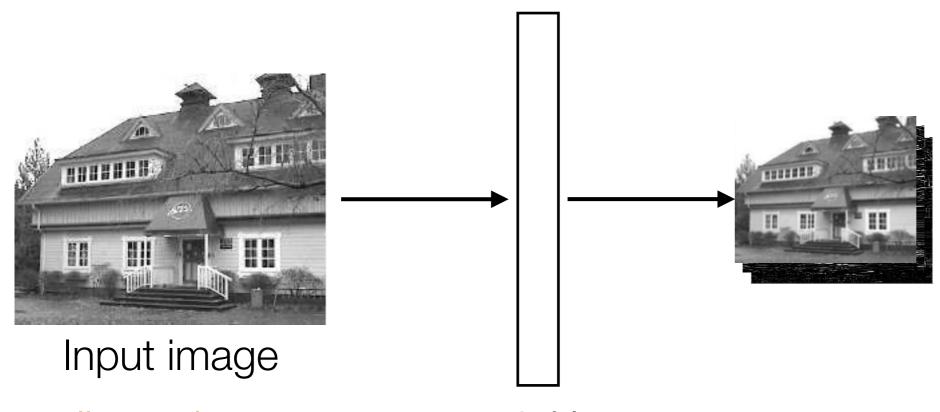


Stack output images into a single "output feature map"

Input image

dimensions: height, width conv2d layer with ReLu activation and three 3x3 kernels dimensions:

height-2, width-2, number of kernels (3 in this case)

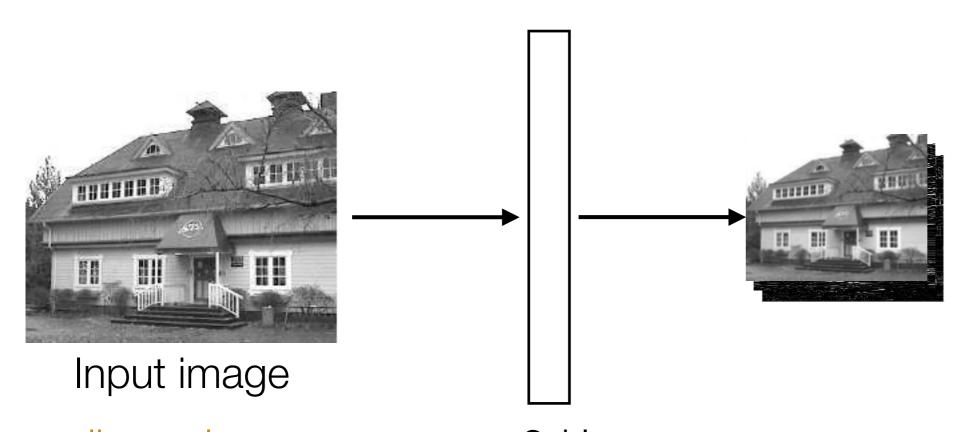


Stack output images into a single "output feature map"

dimensions:

height-2, width-2,

dimensions: height, width conv2d layer
with ReLu activation
and k 3x3 kernels



Stack output images into a single "output feature map"

dimensions:

height-2, width-2, *k*

dimensions: height,

width,

conv2d layer

with ReLu activation

and *k* 3x3x*d* kernels

depth d (# channels) technical detail: there's

also a bias vector

Pooling

Aggregate local information

 Produces a smaller image (each resulting pixel captures some "global" information)

If object in input image shifts a little, output is the same

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

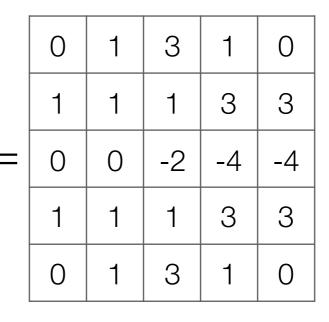
				ı	O	
	-1	-1	-1		1	
•	2	2	2		0	
	-1	-1	-1		1	
				ı	0	

0	1	3	1	0
1	1	1	3	3
0	0	-2	-4	-4
1	1	1	3	3
0	1	3	1	0

Input image

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

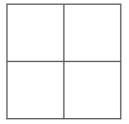
	-1	-1	-1
*	2	2	2
	-1	-1	-1



0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

Input image

Output image after ReLU



0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
О	0	0	0	0	0	0

*	-1	-1	-1
	2	2	2
	-1	-1	-1

	0	1	3	1	0
	1	1	1	3	3
=	0	0	-2	-4	-4
	1	1	1	3	3
	0	1	3	1	0

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

Input image

Output image after ReLU

1

0	0	0	0	0	0	0
0	О	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	О	1	1	1	0	0
0	0	0	0	0	0	0

	-1	-1	-1
*	2	2	2
	-1	-1	-1

0	1	3	1	0
1	1	1	3	3
0	0	-2	-4	-4
1	1	1	3	3
0	1	3	1	0
֡֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	1 0	1 1 0 0 1 1	1 1 1 0 0 -2 1 1 1	1 1 1 3 0 0 -2 -4 1 1 1 3

О	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

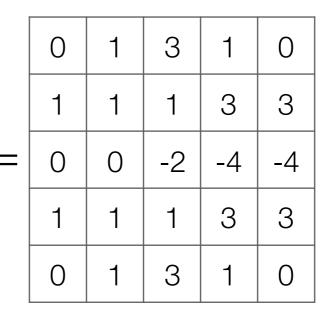
Input image

Output image after ReLU

1 3

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
О	0	0	0	0	0	0

*	-1	-1	-1
	2	2	2
	-1	-1	-1



0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

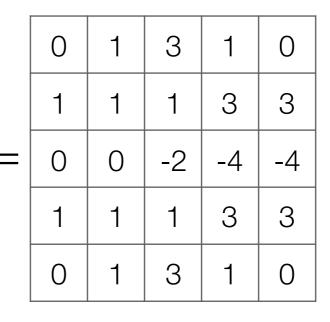
Input image

Output image after ReLU

1 3 1

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
О	0	0	0	0	0	0

	-1	-1	-1
*	2	2	2
	-1	-1	-1



0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

Input image

Output image after ReLU

1	3
1	3

0	0	0	0	0	0	0
0	0	1	1	1	0	0
0	1	1	1	1	1	0
0	1	1	1	0	0	0
0	1	1	1	1	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

	-1	-1	-1
*	2	2	2
	-1	-1	-1

	0	1	3	1	0
	1	1	1	3	3
=	0	0	-2	-4	-4
	1	1	1	3	3
	0	1	3	1	0

0	1	3	1	0
1	1	1	3	3
0	0	0	0	0
1	1	1	3	3
0	1	3	1	0

Output image after ReLU

Input image

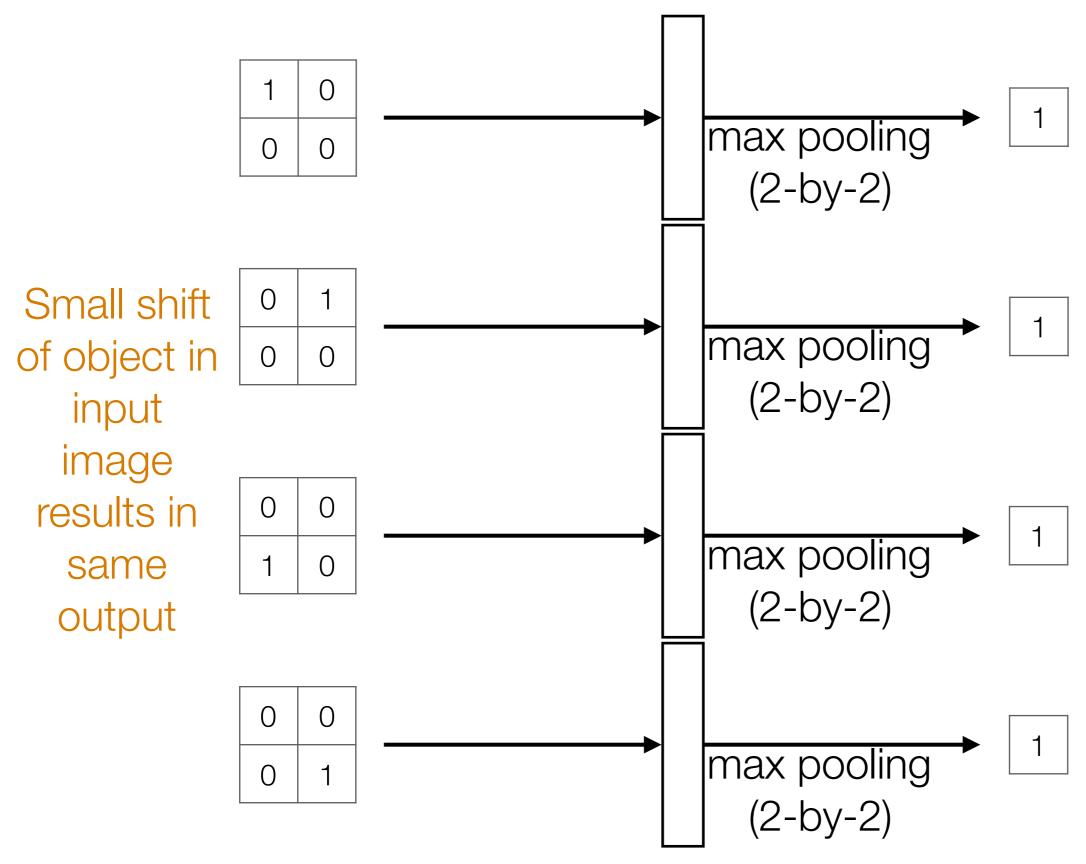
What numbers were involved in computing this 1?

In this example: 1 pixel in max pooling output captures information from 16 input pixels!

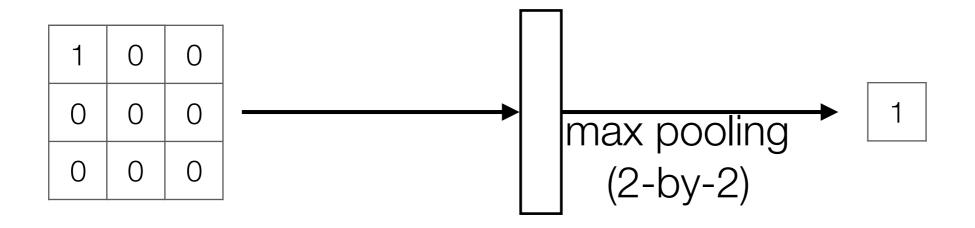
Example: applying max pooling again results in a single pixel that captures info from entire input image!

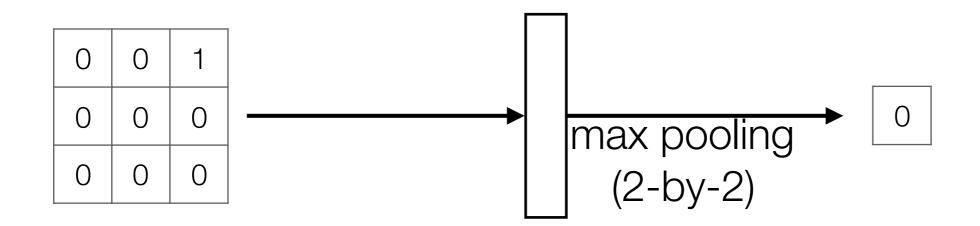
1	3
1	3

Max Pooling and (Slight) Shift Invariance



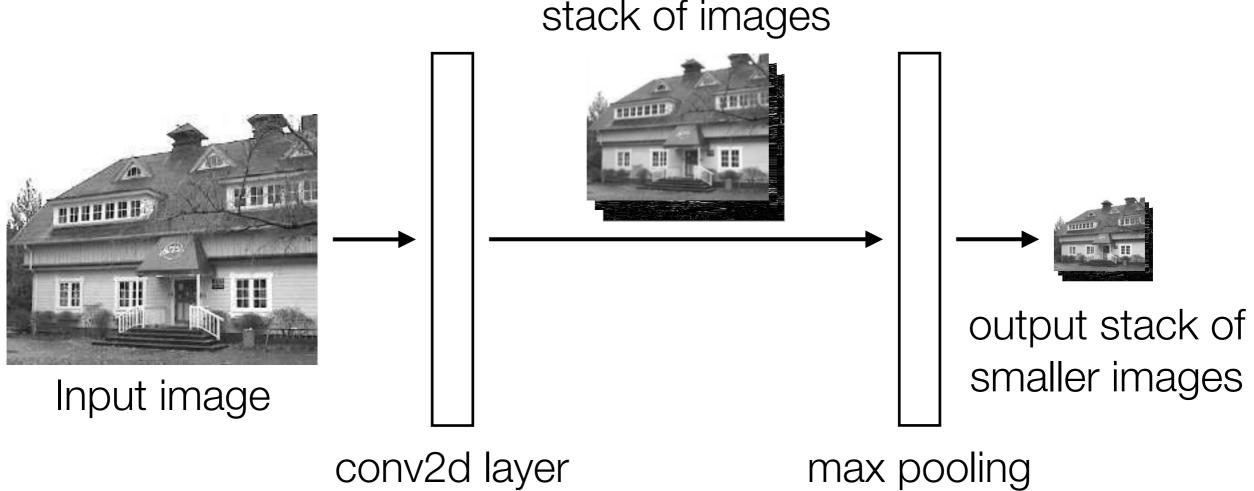
Max Pooling and (Slight) Shift Invariance





Big shift in input can still change output

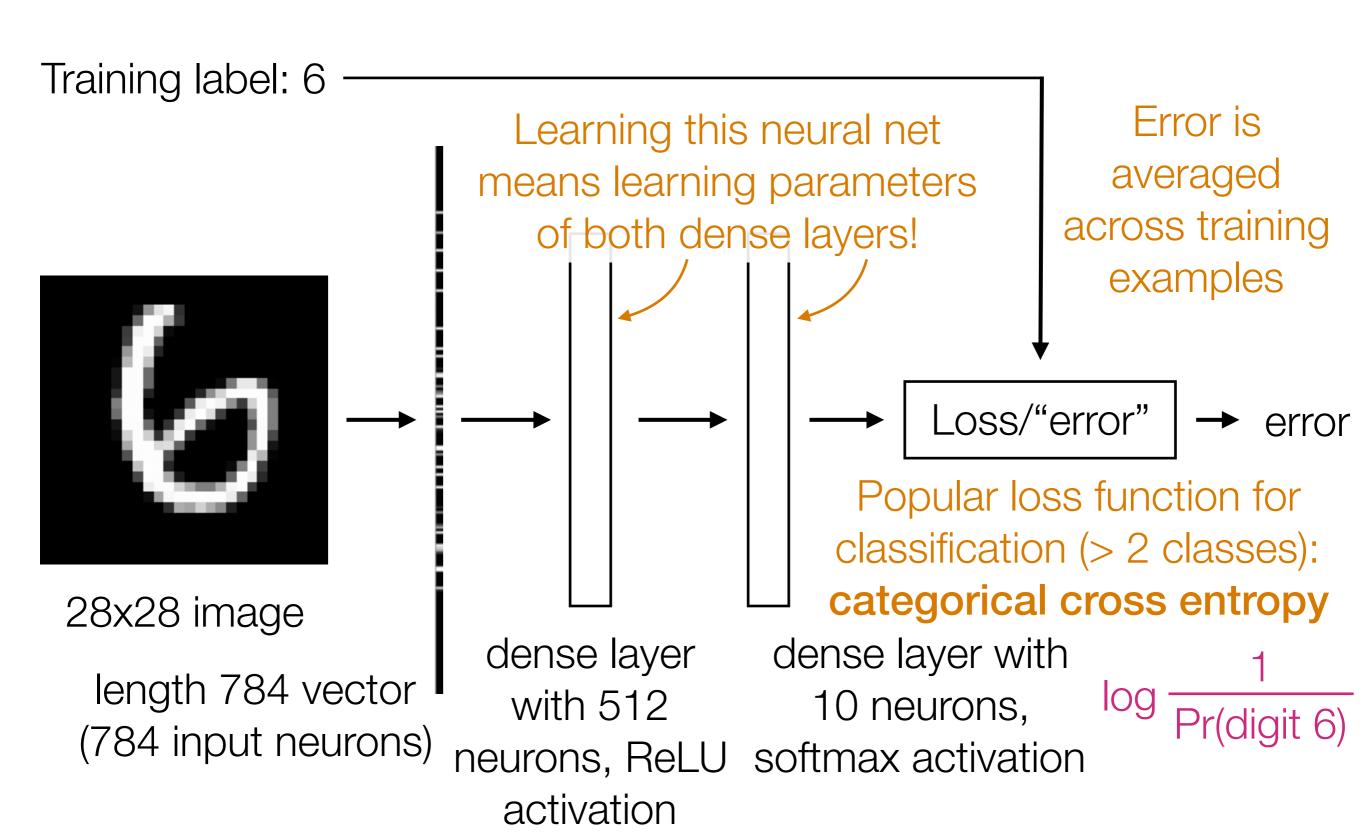
Basic Building Block of CNN's



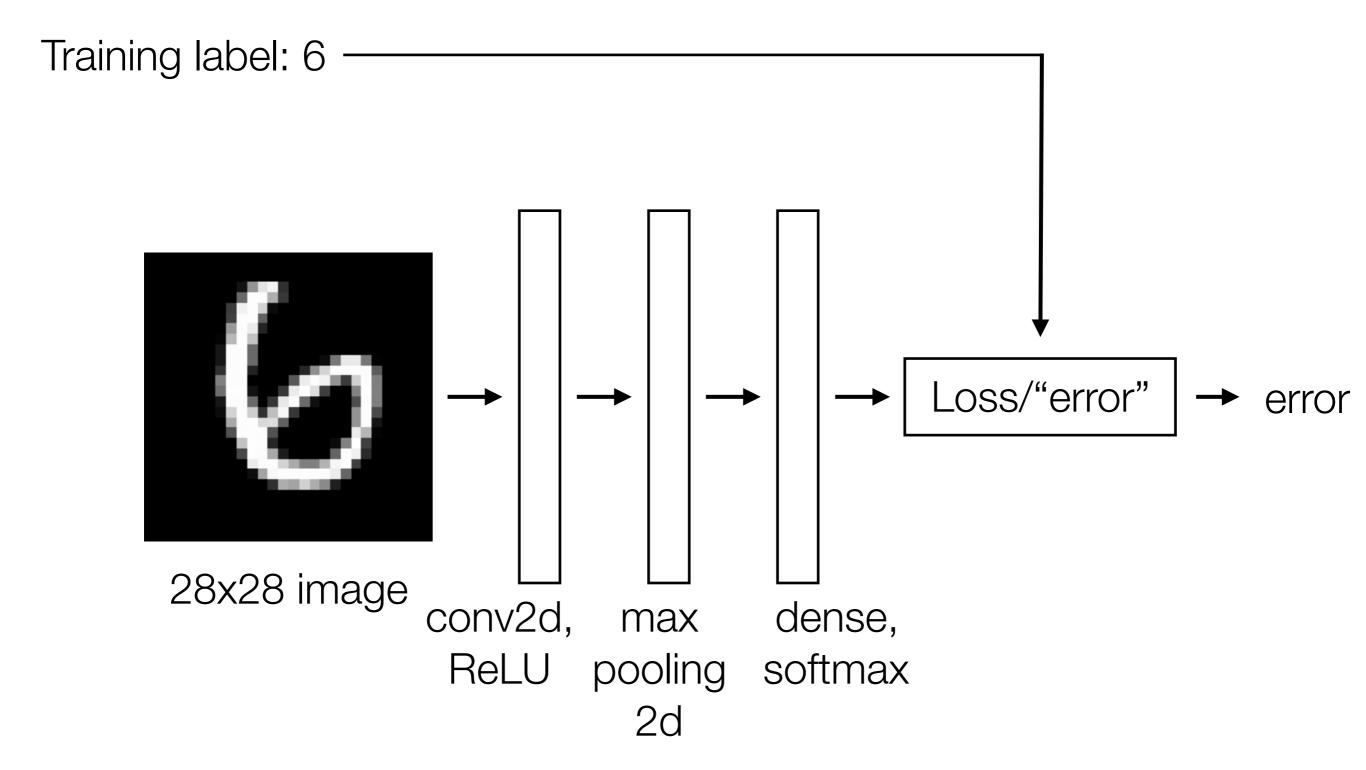
with ReLu activation and *k* kernels

max pooling (applied to each image in stack)

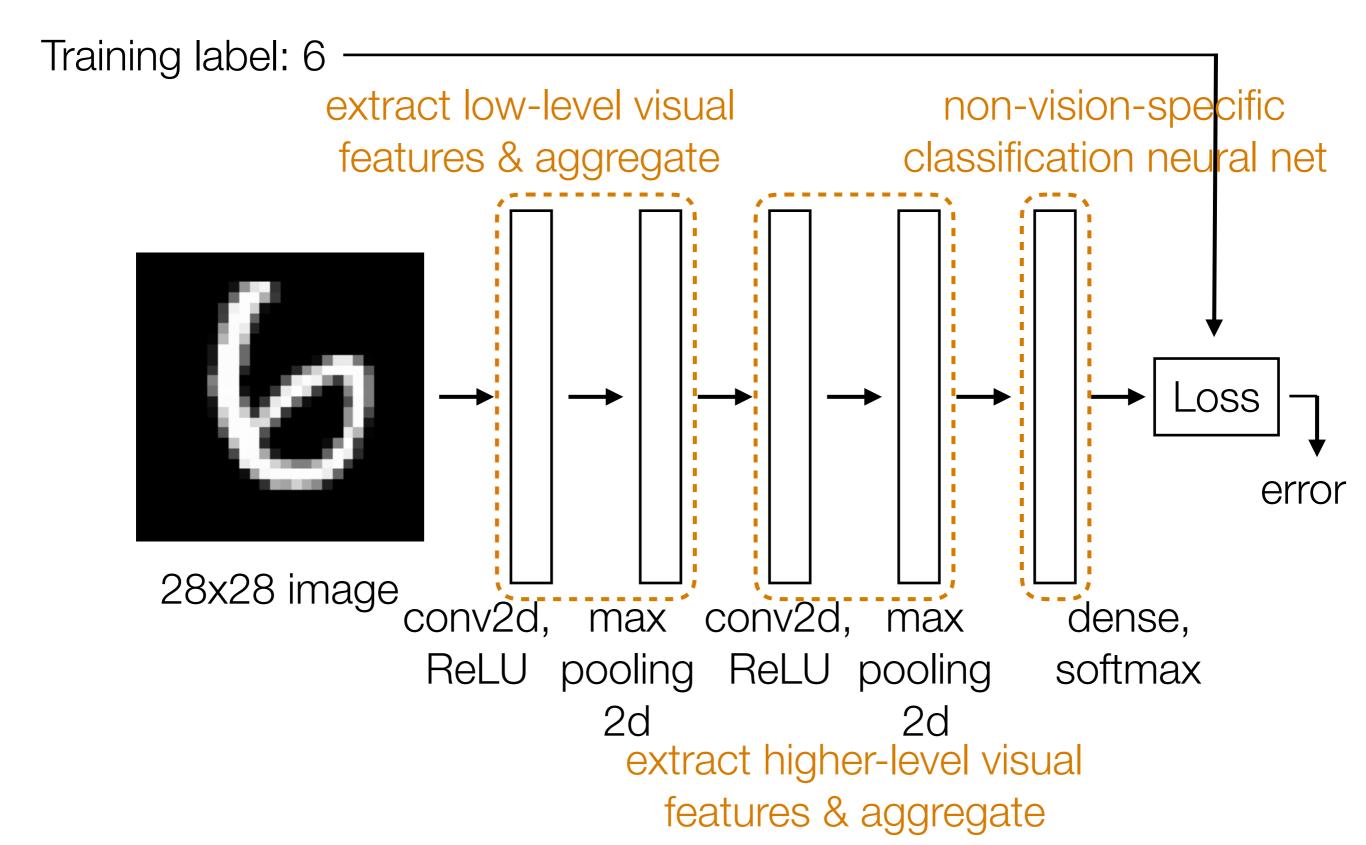
Handwritten Digit Recognition



Handwritten Digit Recognition



Handwritten Digit Recognition



CNN Demo

CNN's

Learn convolution filters for extracting simple features

 Max pooling summarizes information and produces a smaller output and is invariant to small shifts in input objects

 Can then repeat the above two layers to learn features from increasingly higher-level representations